
Motivation Polymorphism Implementation Parametricity

Polymorphism

Rob Sison
UNSW

Term 3 2024

1



Motivation Polymorphism Implementation Parametricity

Where we’re at

Syntax Foundations ✓
Concrete/Abstract Syntax, Ambiguity, HOAS, Binding,
Variables, Substitution

Semantics Foundations ✓
Static Semantics, Dynamic Semantics (Small-Step/Big-Step),
(Assignment 0) Abstract Machines, Environments
(Assignment 1)

Features
Algebraic Data Types ✓
Polymorphism
Polymorphic Type Inference (Assignment 2)
Overloading
Subtyping
Modules
Concurrency

2



Motivation Polymorphism Implementation Parametricity

A Swap Function

Consider the humble swap function in Haskell:

swap :: (t1, t2) → (t2, t1)
swap (a, b) = (b, a)

In our MinHS with algebraic data types from last lecture, we can’t
define this function.

3



Motivation Polymorphism Implementation Parametricity

Monomorphic

In MinHS, we’re stuck copy-pasting our function over and over for
every different type we want to use it with:

recfun swap1 :: ((Int× Bool) → (Bool× Int))
p = (snd p, fst p)

recfun swap2 :: ((Bool× Int) → (Int× Bool))
p = (snd p, fst p)

recfun swap3 :: ((Bool× Bool) → (Bool× Bool))
p = (snd p, fst p)

· · ·

This is an acceptable state of affairs for some domain-specific
languages, but not for general purpose programming.

4



Motivation Polymorphism Implementation Parametricity

Solutions

We want some way to specify that we don’t care what the types of

the tuple elements are.

swap :: (∀a b. (a × b) → (b × a))

This is called parametric polymorphism (or just polymorphism in
functional programming circles). In Java and some other
languages, this is called generics and polymorphism refers to
something else.

5



Motivation Polymorphism Implementation Parametricity

How it works

There are two main components to parametric polymorphism:

1 Type abstraction is the ability to define functions regardless of
specific types (like the swap example before). We will write
type expressions like so: (the literature uses Λ)

swap = type a. type b.
recfun swap :: (a× b) → (b × a)

p = (snd p, fst p)

2 Type application is the ability to instantiate polymorphic
functions to specific types. We will often write like so:

swap@Int@Bool (3, True)

NB: differs from MinHS language in Assignment 2!

6



Motivation Polymorphism Implementation Parametricity

Analogies

The reason they’re called type abstraction and application is that
they behave analogously to λ-calculus.
We have a β-reduction principle, but for types:

(type a. e)@τ 7→β (e[a := τ ])

Example (Identity Function)

(type a. recfun f :: (a → a) x = x)@Int 3
7→ (recfun f :: (Int → Int) x = x) 3
7→ 3

This means that type expressions can be thought of as functions
from types to values.

7



Motivation Polymorphism Implementation Parametricity

Type Variables

What is the type of this?

(type a. recfun f :: (a → a) x = x)

∀a. a → a

Types can mention type variables now1.

If id : ∀a.a → a, what is the type of id@Int?

(a → a)[a := Int] = (Int → Int)

1Technically, they already could with recursive types.
8



Motivation Polymorphism Implementation Parametricity

Typing Rules Sketch

We would like rules that look something like this:

Γ ⊢ e : τ

Γ ⊢ type a. e : ∀a. τ

Γ ⊢ e : ∀a. τ
Γ ⊢ e@ρ : τ [a := ρ]

But these rules don’t account for what type variables are available
or in scope.

9



Motivation Polymorphism Implementation Parametricity

Type Wellformedness

With variables in the picture, we need to check our types to make
sure that they only refer to well-scoped variables.

t bound ∈ ∆

∆ ⊢ t ok ∆ ⊢ Int ok ∆ ⊢ Bool ok

∆ ⊢ τ1 ok ∆ ⊢ τ2 ok

∆ ⊢ τ1 → τ2 ok

∆ ⊢ τ1 ok ∆ ⊢ τ2 ok

∆ ⊢ τ1 × τ2 ok

(etc.)

∆, a bound ⊢ τ ok

∆ ⊢ ∀a. τ ok

10



Motivation Polymorphism Implementation Parametricity

Typing Rules, Properly

We add a second context of type variables that are bound.

a bound,∆; Γ ⊢ e : τ

∆; Γ ⊢ type a. e : ∀a. τ

∆; Γ ⊢ e : ∀a. τ ∆ ⊢ ρ ok

∆; Γ ⊢ e@ρ : τ [a := ρ]

(the other typing rules just pass ∆ through)

NB: differs from MinHS language in Assignment 2!

11



Motivation Polymorphism Implementation Parametricity

Dynamic Semantics

First we evaluate the LHS of a type application as much as
possible:

e 7→M e ′

e@τ 7→M e ′@τ

Then we apply our β-reduction principle:

(type a. e)@τ 7→M e[a := τ ]

12



Motivation Polymorphism Implementation Parametricity

Curry-Howard

Previously we noted the correspondence between types and logic:

× ∧
+ ∨
→ ⇒
1 ⊤
0 ⊥
∀ ∀

13



Motivation Polymorphism Implementation Parametricity

Curry-Howard

The type quantifier ∀ corresponds to a universal quantifier ∀, but
not from first-order logic. What’s the difference?

First-order logic quantifiers range over a set of individuals or
values, for example the natural numbers:

∀x . x + 1 > x

The type quantifier ranges over types (not values!), or invoking
Curry-Howard: propositions. Analogous to second-order logic:

∀A. ∀B. A ∧ B ⇒ B ∧ A
∀A. ∀B. A× B → B × A

(First-order quantifier’s type-theoretic analogue: dependent types!)

14



Motivation Polymorphism Implementation Parametricity

Generality

If we need a function of type Int → Int, a polymorphic function
of type ∀a. a → a will do just fine, we can just instantiate the type
variable to Int. But the reverse is not true. This gives rise to an
ordering.

Generality

A type τ is more general than a type ρ, often written ρ ⊑ τ , if
type variables in τ can be instantiated to give the type ρ.

NB: ρ ⊑ τ is often written τ ≺ ρ in the literature.

Example (Functions)

Int → Int ⊑ ∀z . z → z ⊑ ∀x y . x → y ⊑ ∀a. a

15



Motivation Polymorphism Implementation Parametricity

Implementation Strategies

Our simple dynamic semantics belies an implementation headache.

We can easily define functions that operate uniformly on multiple
types. But when they are compiled to machine code, the results
may differ depending on the size of the type in question.

There are two main approaches to solve this problem.

16



Motivation Polymorphism Implementation Parametricity

Approach 1: Template Instantiation

Key Idea

Automatically generate monomorphic copies of each polymorphic
function, based on the types applied to it.

For example, if we defined our polymorphic swap function:

swap = type a. type b.
recfun swap :: (a× b) → (b × a)

p = (snd p, fst p)

Then a type application like swap@Int@Bool would be replaced
statically by the compiler with the monomorphic version:

swapIB = recfun swap :: (Int× Bool) → (Bool× Int)
p = (snd p, fst p)

A new copy is made for each unique type application.
17



Motivation Polymorphism Implementation Parametricity

Template Instantiation Pros and Cons

This approach has a number of advantages:

1 Little to no run-time cost

2 Simple mental model

3 Allows for custom specialisations (e.g. list of booleans into
bit-vectors)

4 Easy to implement

However the downsides are just as numerous:

1 Large binary size if many instantiations are used

2 This can lead to long compilation times

3 Restricts the type system to statically instantiated type
variables.

Languages that use Template Instantiation: Rust, C++, some
ML dialects

18



Motivation Polymorphism Implementation Parametricity

Approach 2: Boxing

An alternative to our copy-paste-heavy template instantiation
approach is to make all types represented the same way. Thus, a
polymorphic function only requires one function in the generated
code.

Typically this is done by boxing each type. That is, all data types
are represented as a pointer to a data structure on the heap. If
everything is a pointer, then all values use exactly 32 (or 64) bits
of stack space.

The extra indirection has a run-time penalty, but it results in
smaller binaries and unrestricted polymorphism.

Languages that use boxing: Haskell, Java, C♯, OCaml

19



Motivation Polymorphism Implementation Parametricity

Example: Polymorphic Recursion

Consider the following Haskell data type:

data Dims a = Step a (Dims [a]) | Epsilon

This describes a list of matrices of increasing dimensionality, e.g:

Step 1 (Step [1, 2] (Step [[1, 2], [3, 4]] Epsilon)) :: Dims Int

We can write a sum function like this:

sumDims :: ∀a. (a → Int) → Dims a → Int

sumDims f Epsilon = 0
sumDims f (Step a t) = (f a) + sumDims (sum ◦ (map f )) t

How many different instantiations of the type variable a are there?
We’d have to run the program to find out.

20



Motivation Polymorphism Implementation Parametricity

HM Types

Template instantiation can’t handle all polymorphic programs.

In practice a statically determined subset can be carved out by
restricting what sort of programs can be written:

1 Only allow ∀ quantifiers on the outermost part of a type
declaration (not inside functions or type constructors).

2 Recursive functions cannot call themselves with different type
parameters.

This restriction is sometimes called Hindley-Milner polymorphism.
This is also the subset for which type inference is both complete
and tractable.

21



Motivation Polymorphism Implementation Parametricity

Constraining Implementations

How many possible implementations are there of a function of the
following type?

Int → Int

How about this type?

∀a. a → a

Polymorphic type signatures constrain implementations.

22



Motivation Polymorphism Implementation Parametricity

Parametricity

Definition

The principle of parametricity states that the result of polymorphic
functions cannot depend on values of an abstracted type.
More formally, suppose I have a polymorphic function g that takes
a type parameter. If run any arbitrary function f : τ → τ on some
values of type τ , then run the function g@τ on the result, that will
give the same results as running g@τ first, then f .

Example

foo :: ∀a. [a] → [a]

We know that every element of the output occurs in the input.
The parametricity theorem we get is, for all f :

foo ◦ (map f ) = (map f ) ◦ foo

23



Motivation Polymorphism Implementation Parametricity

More Examples

head :: ∀a. [a] → a

What’s the parametricity theorem for head?

Example (Answer)

For any f :

f (head ℓ) = head (map f ℓ)

24



Motivation Polymorphism Implementation Parametricity

More Examples

(++) :: ∀a. [a] → [a] → [a]

What’s the parametricity theorem for list append (++)?

Example (Answer)

map f (a++ b) = map f a++ map f b

25



Motivation Polymorphism Implementation Parametricity

More Examples

concat :: ∀a. [[a]] → [a]

What’s the parametricity theorem for list concatenation concat?

Example (Answer)

map f (concat ls) = concat (map (map f ) ls)

26



Motivation Polymorphism Implementation Parametricity

Higher Order Functions

filter :: ∀a. (a → Bool) → [a] → [a]

What’s the parametricity theorem for filter?

Example (Answer)

filter p (map f ls) = map f (filter (p ◦ f ) ls)

27



Motivation Polymorphism Implementation Parametricity

Parametricity Theorems

Follow a similar structure. In fact it can be mechanically derived,
using the relational parametricity framework invented by John C.
Reynolds, and popularised by Wadler in the famous paper,
“Theorems for Free!”2.

2https://people.mpi-sws.org/~dreyer/tor/papers/wadler.pdf
28

https://people.mpi-sws.org/~dreyer/tor/papers/wadler.pdf

	Motivation
	

	Polymorphism
	

	Implementation
	

	Parametricity
	


